Boosting with Temporal Consistent Learners: An Application to Human Activity Recognition

نویسندگان

  • Pedro Canotilho Ribeiro
  • Plinio Moreno
  • José Santos-Victor
چکیده

We present a novel boosting algorithm where temporal consistency is addressed in a short-term way. Although temporal correlation of observed data may be an important cue for classification (e.g. of human activities) it is seldom used in boosting techniques. The recently proposed Temporal AdaBoost addresses the same problem but in a heuristic manner, first optimizing the weak learners without temporal integration. The classifier responses for past frames are then averaged together, as long as the total classification error decreases. We extend the GentleBoost algorithm by modeling time in an explicit form, as a new parameter during the weak learner training and in each optimization round. The time consistency model induces a fuzzy decision function, dependent on the temporal support of a feature or data point, with added robustness to noise. Our temporal boost algorithm is further extended to cope with multi class problems, following the JointBoost approach introduced by Torralba et. al. We can thus (i) learn the parameters for all classes at once, and (ii) share features among classes and groups of classes, both in a temporal and fully consistent manner. Finally, the superiority of our proposed framework is demonstrated comparing it to state of the art, temporal and non-temporal boosting algorithms. Tests are performed both on synthetic and 2 real challenging datasets used to recognize a total of 12 different human activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Ontology-Based Approach for Human Activity Recognition from GPS Data

Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researche...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Human Action Recognition Based on Boosting

Human action recognition is an active research field in computer vision and image processing. In this paper we propose a novel method for the task of recognition of human actions in video image sequences. First of all, a video sequence is represented as a collection of spatial-temporal words by extracting space-time interest points, which is used to characterize action. Then visual words are us...

متن کامل

Semi-supervised and Active Training of Conditional Random Fields for Activity Recognition

Automated human activity recognition has attracted increasing attention in the past decade. However, the application of machine learning and probabilistic methods for activity recognition problems has been studied only in the past couple of years. For the first time, this thesis explores the application of semi-supervised and active learning in activity recognition. We present a new and efficie...

متن کامل

On the Characterization of a Class of Fisher-Consistent Loss Functions and its Application to Boosting

Accurate classification of categorical outcomes is essential in a wide range of applications. Due to computational issues with minimizing the empirical 0/1 loss, Fisher consistent losses have been proposed as viable proxies. However, even with smooth losses, direct minimization remains a daunting task. To approximate such a minimizer, various boosting algorithms have been suggested. For example...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007